

To find the SA simply multiply 4 times 3.14159 times the radius square. π is, of course, the well-known mathematical constant, about equal to 3.14159. Visual on the figure below:Ī sphere's surface area can be calculated just by knowing its diameter, or radius (diameter = 2 x radius). The surface area formula for a sphere is 4 x π x (diameter / 2) 2, where (diameter / 2) is the radius of the sphere (d = 2 x r), so another way to write it is 4 x π x radius 2. to find the surface area of a cube with a side of 3 inches is to multiply 3 x 6 = 18 square inches. side 2 is the surface of one of the sides, and since the cube has 6 equal sides, multiplying by 6 gives us the total cube surface area. This calculation requires only one measurement, due to the symmetricity of the cube. The surface area formula for a cube is 6 x side 2, as seen in the figure below: The result from our surface area calculator will always be a square of the same unit: square feet, square inches, square meters, square cm, square mm. In all surface area calculations, make sure that all lengths are measured in the same unit, e.g. Below are the formulas for calculating surface area of the most common body types.
Total area of a triangular prism how to#
How to calculate the surface area of a body?ĭepending on the type of body, there are different formulas and different required information you need to calculate surface area (a.k.a. How to calculate the surface area of a body?.So the surface area of this figure is 544.
Total area of a triangular prism plus#
So one plus nine is ten, plus eight is 18, plus six is 24, and then you have two plus two plus one is five. To open it up into this net because we can make sure We get the surface area for the entire figure. And then you have thisīase that comes in at 168. You can say, side panels, 140 plus 140, that's 280. 12 times 12 is 144 plus another 24, so it's 168. Region right over here, which is this area, which is Just have to figure out the area of I guess you can say the base of the figure, so this whole And so the area of each of these 14 times 10, they are 140 square units. Now we can think about the areas of I guess you can consider It would be this backside right over here, but You can't see it in this figure, but if it was transparent, if it was transparent,

So that's going to be 48 square units, and up here is the exact same thing. Thing as six times eight, which is equal to 48 whatever Here is going to be one half times the base, so times 12, times the height, times eight. Of this, right over here? Well in the net, thatĬorresponds to this area, it's a triangle, it has a base So what's first of all the surface area, what's the surface area We can just figure out the surface area of each of these regions. So the surface area of this figure, when we open that up, And when you open it up, it's much easier to figure out the surface area. So if you were to open it up, it would open up into something like this.

Where I'm drawing this red, and also right over hereĪnd right over there, and right over there and also in the back where you can't see just now, it would open up into something like this. It was made out of cardboard, and if you were to cut it, if you were to cut it right Video is get some practice finding surface areas of figures by opening them up intoĪbout it is if you had a figure like this, and if
